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ABSTRACT 

The paper presents an algorithm for solving the zero-one 

Integer programming problem.     In contrast  to the usual  approach, 

which reduces the problem to finding the optimal values for variables 

restricted to values of zero and one,  we view the problem as finding 

an optimal map among a class of mappings of one finite  set  into 

another.    The basic  approach is  to characterize the statistical 

structure of  the  finite class of maps.    Our  technique consists 

of trying to  identify  the optimal   feasible map in a class of 

maps,   by introducing random variables as  functionals on  the class 

of maps.    V/e derive explicitly the  statistical properties of  the 

class of maps associated with the zero-one  integer programming 

problem.    Using the mean and variance-covariance matrix  the  idea 

of confidence level  enumeration  is developed. 
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A NEW  APPROACH  TO DISCRETE MATHEMATICAL PROGRAMMING 

by 

G. Graves and A.  Whinston 

Introduction 

We  shall present  in  this  paper an algorithm for  solving 

the fo]mowing problem: 

Mln.   Sc x 

(1) s.t. ^i < X«  < b^ 101,2,...^ 
f U ^ -     1 

XjGI   3   (0,1) 

The above linear integer programming problem is a specialization of 

the following: 

Min.   JfjOCj) 

(2) Egi/V-bi 1=1,^,...,ni 

W ^'l'2 sj) 

Note that  no conditions such as convexity or differentiability are 

imposed on  the function.     The algorithm to be outlined  below    can 

be used  to  solve problem  (2).     However,   for purposes of exposition 

it  is convenient to deal  with  problem  (1). 

 ^   dBlta_____MiMaM 
___ — ■— 



2. 

This paper presents  the theoretical foundations  for a 

new approach to Integer programming.    On the basis of  the 

theoretical  arguments,  various  specific computational  procedures 

are  developed which could  be used to  solve the  Integer  programming 

problem.      However,  definitive computational results  are not, 

presented.     In future papers we plan  to explore the various 

computational options developed hore. 

The literature devoted to presenting methods   tor solving 

problem (1)   1^  very extensive.    A comprehensive survey has been 

presented by Ballnskl [2 ].    Roughly  speaking the approaches  to 

this  problem can be divided into three groups.    The first point 

of view initiated by Gomory Involves generating the convex hull 

of the Integer problem and then employing linear programming 

techniques.     An elegant  theory lias been developed by Goit.ory 

to demonstrate, among other things,   finite convergence.    However, 

the computational experience with the method has proved Incon- 

2 
elusive.    This seems to be especially true for larger problems. 

The second approach can be characterised,   In general, 

as an enumeratlve-combinatorial  approach to tne problem.    Many 

researchers have made contributions  to developing this  theory. 

An early paper of Gilmore  [ 5 J   presented an algoritnm for  the 

quadratic  assignment problem    within  this framework.       Recently 

vori;  by Balas  [ 1 J  and Glover  [ 6 J  has  developed an elegant 

enumeratlve  algorithm  to solve  a  linear  integer problem. 

Basically  the method  involves  an  intelligent  search   through 

■■■ 
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3. 

all   possibilities.     The  ability   to develop methods of  excluding 

lar.je numbers of possible solutions is the critical  element in 

this  approach.    To thib end bounds are developed in order to 

exclude  solutions which would never be feasible or optimal. 

However,  computational  experience tends to suggest  that  because 

the  bounds are not  sufficiently  Informative at early stages of 

the computation,  large problems cannot be handled.    Roughly 

speaking problems where the number of variables exceeds 20 

car   not  be effectively solved. 

A third approach has  been developed by Reiter and 

Sherman [lOJ.    They have used statistical  sampling techniques 

combined with methods for finding local optima.    This approach 

appears  to be quite effective for unconstrained problems.    For 

the case where the problem has constraints,  a large number of 

the samples may have to be rejected because of infeasibility. 

The approach to  be developed here  might  be considered 

an extension of  the methods using enumeration.     Instead of 

relying on lower bounds to truncate the process,  we will 

Introduce a new more powerful  approach based on population 

statistics.    The use of population statistics  should not  be 

confused with the sampling  statistics or random search 

procedure  described above. 

Compucat tonal Scneme 

This section will  outline  tne computational   scheme used 

in  solving  the problem.     Typically,   integer programming  problems 
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are considered from the point of view of finding the optimal 

Integer values for a vector of variables.      We shall  view the 

problem In a different light - as one of selecting the optimal 

function among a certain class of functions which map elements 

of one set Into another.     For the type of problems discussed 

In  this paper the class of  functions lb finite.     A  function or 

map Is  characterized by  the way  It assigns elements of one  set 

to another set.    By a k      partial map we shall mean  the subset 

of all  functions which agree for some particular  set of k elements 

of  the domain of  the nap;.     The napr  in  this clo:.s  will  alffer 

In the way they assign to the remaining elements  in the domain. 

The Integer programming problem can  then be formulated 

as selecting from among the set of admissible maps  the one which 

maximizes a linear functional.     Note that not all maps would be 

admissible because of  the constraints on the problem. 

For the zero-one integer programming problem  ve may 

characterize the  functions  as  those which map  the 

Integers I =  {!,...n)  onto the set  (0,  i).    There are 2 

such functions. 

It is clear  that  one way of solving the problem  Is 

to enumerate all possible maps.    As pointed out above this  is 

obviously  impractical.     The  first  modification of  a complete 

enumeration is to implicity enumerate all  solutions.     This 

simply means  that  in the course of  our enumeration,   certain 

subsets  of  mapb can be ruled out  without explicit  examination. 



There Is sufficient Information to show that these subaets could 

not contain a feasible optimal solution« These subsets are said 

to be implicitly enumerated. 

In constructing an implicit enumeration  scheme,   there 

are four basic parts of   tue prccadure; 

1) A compact  flexible enumeratlve scheme 

2) Truncation by feasibility 

3) Truncation by optimality 

4) Selection of  the next element  to add to a 

partial  specification of the mapping 

Let us consider  the idea of an enumeratlve scheme In 

the context of  the above  development.    An enumeratlve scheme is 

a  systematic way of generating all of the maps.     It  Indicates 

which maps have been already generated and,   of course, which 

ones remain to be enumerated.    One enumeratlve procedure would 

be  to simply list all maps  that have been examined.    However, 

for any reasonably  sized problem,  the number of possible maps 

would be too large.     Simple listing would be  impossible 

because of  the enormous memory requirement.     Thus a good 

enumeratlve scheme mu^t allow for a compact  representation 

of  the required  information.    In addition to compactness, 

flexibility in the choice of successive maps  is extremely 

valuable.    For example,  consider the following possible way 

of  recording maps for   the  present problem.     Start with  the 

zero vector and add  the number 1  successively  in binary 

form until  all  binary  vectors have been generated.     Since 
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• map can be uniquely represented by an n-vector of zeros and 

ones, this would enumerate all maps In a compact manner while 

indicating the number of solutions already tried. However, 

this scheme, while extremely compact, does not allow any 

flexibility of choice. 

Within the class of enumerative schemes which allow 

for a compact storage, one should strive for a schemo which 

allows for maximal freedom in the sequence of successive maps 

generated. We thus present a general, flexible compact scheme 

for generating all admissible mappings of the set S into R. 

While below we present the procedure in a rather abstract manner 

the ideas underlying it are quite natural. One of the earliest 

uses of such ideas is due to Tarry [ll] in his algorithm for 

finding a path through all vertices of a rooted graph. We 

proceed in the following manner where the steps follow con- 

secutively, unless indicated: 

0. Initialize by setting k=l and determine S and R according 

to a specified rule, perhaps determined by feasibility, 

1. If R is empty go to 7 

2. Select any elements 

i*   es. 

J*    €Rk 

Set ik=ii*    and Jk=J*    and Rk=R
k-[J*] 

3. If k=n go to 11 

4. Set k+l=k 



5. Determine Sk and Rk according to some specified rule, 

perhaps determined by ~easib1lity 

6. Go to 1 

7. It kl etop 

8. Set k-l•k 

9. If ~ is .. pty go to 7 

10. Select any element J• Cll • 
_k -

s~~ ~k~J~ _ ~o gq . with the 

current ik and set R R -J• k k and co to 3 

11. Record the current mapping 

12. Go to 9 

In the pre~;ent case we take SILI5
1 

• (1,2, ••• n}, 

a.a1 • (0,1} and in Step 5 we aet 

k-1 
Sk•S- t'='l. it 

aud 

~-(0,1} 

These choices generate the desired aaps. With the above specifi-

cation the general enumerative ach .. e given here reduces to one 

proposed by Glover [ 6 ] to solve the 0-1 integer progr ... inc 

problem. 

Another application of the general enumerative ach ... 

is to the generation of all n! ~rmutations of the inteaera 

l•(l,2, ••• n}. For this application we set s-s
1 

• (l,2, ••• n), 

R-R
1 

• (1,2, ••• n} and in Step 5 

k-1 
Sk•S-t';l it 

k-,1 
R •1\- "- j 

k tel t 

7. 
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A  variant of  this napping  scheme was used to solve  the quadratic 

assignment  problem «b given  In  [8j 

Step two In  the enumeratlve scheme  Involves  the  selection 

of  a particular variable,   i.e.;     an element  from the  set S-\j   i 
t=l   t 

and  its assignment  to either  the element zero or one. 

Because of  the powerful  selection mechanism to be developed 

below, the flexibility of  being able  to select  the variable  Is 

not  needed  in  the present  application.    The order  in which we 

treat  the variables will  be  fixed.    The enumeratlve procedure 

is  altered  slightly  to account  for  this change.     Let   (1   %..i   ) 
1'  n 

be an ordering of the integers [l|2,...n}. Then set S =(i ), 

S *(in) .. S =(i ). By renumbering the variables we may assume 
2  2     n  n 

that S. = (l), S,-U)f ...S a{n). 12       n 

The enumeratlve procedure has the effect of transforming 

the integer programming problem into an n-stage decision problem. 

th 
At the k  stage of the algorithm we have to decide what value 

to assign the variable x .  There are two considerations. 

First the local or immedlac; effect of settinj x to a value. 

By setting x =1 the criterion value Is Increased by c  (our 
K K 

immediate cost) and each constraint is altered by the value a  . 
X K 

The alternative choices of zero  or one for x determine 
k 

alternative subsequent problems In which possible choices for 

x  ....x are differently restricted because of the a,, . This 
k+1   n Ik 

second factor, the potential future cost, Is the crucial factor. 

What is the cost of the alternative restrictions on the subsequent 

possible assignment of values for the remaining x, ,..,x 7 
K+ 1   n 



If one were able to evaluate the second factors exactly 

it would be possible to assign at each step the correct value and 

solve the problem exactly in n steps. This Is, of course, not 

possible. The next best thing to knowing exactly the values of 

the completions is no know them almost surely. The use of 

probability usually enables us to obtain very good information 

at a fraction of the cost of obtaining exact information.  It 

is to capitalize on this that we develop the present approach. 

It should also be observed that in the largo scheduling and 

allocation problems for which this algorithm is intended, the 

uncertainties in the underlying data reduce attempts to obtain 

the exact optimal solution with certainty to pedantry. 

What is required for present purposes Is the probability 

distribution of the values of the linear functionals over the 

discrete sample space of the remaining 2   completions of the 

current k-partial map. Although it is impossible to obtain 

the exact tnultlvariate distribution desired without complete 

enumeration, the really useful fact Is that we can obtain the 

vector of means and covarlance matrix of this distribution 

exactly and an asymptotic approximation to the distribution. 

Statistical Properties of the Problem 

Let x  be random variables which have the following 

probability distributions: 

Pr(x =1) = 1/2   and 

Pr(x =0) = 1/2 

and further assume the x  to be Independent. 

-^ '  -^' 
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n 
Then « = £ ax   is also a random variable whero{a ) is any 

set of real constant .    The means variances, and covariances 

of linear functions of random variables are well known. 

M.CZ,) = 2aj > 

2^ v   v 2  2 

and, 

where 

"^vv^iiftV^ 
.J=E(xj)1    /^(x^j)

2   and 

c(a ,a ) = E[ (a H (g )(g -Mz )] 
P  q        P    P   q    q 

= 1/2 find - 
J 

Now in our particular case since V ,=1/2  and n  =1/4 

these formulas reduce to: 

and, 

||c(VV   ll-.AllJa^.a^U. 

Further,   the 2     are  sums of   independent  random  variables.     Taking 

2 2 x  ,   = ai. xi    then £Cx., )   =  a., ,„ and a  (x^,)   =   a   ., . .   and ik ikk ik ik/2 ik ilc/4 

g,     = 1 x^ ,     The LindeberfT  theorem  [3   1   stater.:     "Let x     ,, 
in     k=l   ik il 

x       ,...   be mutually   independent one-dimensional   random variables 

with  distributions F   ,   F„ . ..     .     Assume E(x   ..)=0  [e.g x     =x     -E(x     )J 
1A- 1K IKIKIK 

2 2 2 
and  put n  (i.   )  =  ^T  (x.,)   +  n   (x     ),...-(   a   (x     ). 

in il 12 in 

Azurne  that   for  each   i   "•< 

1 im 
n 
T 

k=l 

r 
j 

|y| 

y"     Fk[dyl 

n- * ^i?.     ) 
in 

>   t n2(Zi   ) 
-                in 

_L_ 
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then the distribution of the normalized sun 

~    Z4 -E(a. ) Ba =  in   in 
1" —  

^(ain) 

tends  to  the normal  distribution N  (0,1)," 

Now assuming all   the a      ar?  from a bounded set,   since 

~  .2 

rr^Z, )- ^ as n- ^ for 
in any t ^ 0 the integrals  f , ^  « 2,1     x = 0 J B     J lyl> t ^ (8, ) —      in 

for sufficiently large n, and tne required condition for the 

LindeLarg theorem is satisfied.  The fact that for large numbers 

~   2  - E(Z ) 
of variables, Z  = _i i  is approximately normal, enables 

one to estimate the minimum values of the Z almost surely as 

follows:  P (Z < c ) = a Is readily obtainable from normal tables r  i— cr 

for any confidence level a.     Hence, P (ZJ<E(ZJ) + c (7(2,)) = a 
r     i—      i a      1 

is  available  for  each of  the Z   . 

The above results can be extended  to obtain confidence 

level  statements  about  the joint  or coupled behavior of  the Z   . 

The Lindeberg Theorem is  readily extended to  show that  the vector 

(Z, , Äri,...,Z  )   is  asymptotically multivariate normal, 
1       <£ n 

Confidence Level   Implicit Enumeration 

In  the course of  the underlying  enumeration  it  is 

necesnary  to apply  tne results of   tne  previous  section  to  the 

truncated ranaom  variables  dictated by   the  successive  fixing of 

elements of   the map.     To  this  purpose,   we   introduce   the  following 

definitions: 

Z   (k)   = a ,•:,,+  .i .,    ^    :,    ,    + +a.   X i i,k+l     k+1 i,k+?     k+^i in n 

for     1  < k < n  and  B  (n)   -  Ü, 



a^k) 
'llXl   +   \2X2+   •••'l.k-lVl 

12, 

for 1  < k < n and 8.(1)  « 0 

where        (x    x.   ...,x.   .) are the already chosen fixed values for 

these variables. 

The criterion function  Is designated B    » c,x,+c0x(,+ .. .+c x   . 0      c   1122     nn 

As Is customary In the zero-one problem, we assume that the 

c > 0. This does not restrict complete generality inasmuch as 
j 

■ 
the simple  translation of variables x    =  1-x    for ^e c    < 0 will 

insure this condition. 

The most  elementary use of  the  statistical  properties 

developed in  the previous sections  Is  to  supplemrr.t  the bounds 

employed in  the deterministic  Implicit enumarntion as expounded by 

B.olas,  Glover and others.    To  see how this can be done,   let us 

recapitulate  the use of bounds  for  implicitly enurerating.     Take 

Z~(k)  = S_ a        where S~ = (J   | Q      < 0 and k< J < n ) 

and clearly E   (k)  > a   (k).    Now for a  feasible solution 

2i = Ei(k)   +  aik\ + Zl(k) ^ bl 

or 

Z (k)   < b- Z(k)   - ax,   = V  fk) 
i        -    J i Ik k 1 

So the possible completions of  the  partial  map are  implicitly 

enumerated   if   for  neither value of   x    is 

s7(k)   < b     -  g   (k)-n    ;L 
1 -    i i Ik K 

while the value of \     is fixed if tue inequality holds for one value 
K 

but not the other.  The above argument applies as well to the 

criterion function when b is replaced by S  the best known 
t c 

feasible value, with the additional fact that S =fl  and hence 
c 

g~(k)=0. 
c 
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The simplest use of the statistical properties of our 

problem would then be to use the estimated minlinuro 

a|(k) = £(2^10)+ caa(8 (k) 

in place of the absolute bound fe (k) in the above argument.  The 

possible completions of the partial map are then implicitly 

enumerated with a confidence level of a,    Confidence level implicit 

enumeration is an agreement not to check further those subsets of 

maps that have ICHS than a%  chance of contajning a better feasible 

solution.  It should be noted that by Its construction 8 (k) is a 

n-K 
random variable on the finite sample space of the remaining 2 

completion maps with equal probability of   for each map. 

Now V (k)=b -Z (k)-a x establishes a cutoff value (with a choice 
1    11    Ik k 

of a value for x ) for a feasible solution of the i  constraint, 
k 

By fixing a end calculating the corresponding critical value 

3'(k) from the normal distribution if g'(k) > V (k), we can then 

infer the probability (or relative frequency) of the maps that 

would yield feasible solutions to the 1  constraint is less than 

or. By considerin,; all of tlie constraints Jointly, the probability 

that a feasible map could be found would be diminished.  Schematically 

the situation would appear as follows(sce fig. 1); 

s 
uryo ' 1 

8;(k) 

The total shaded area contains ni%  of the maps and the area to the 

left of V (k) contains less than 01%.  of the maps.  It should be 

  ■  .-r^-te 
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observed that the truncation of the tails of the normal distribution 

because of our finite space approximation would cause the variances 

to be over estimated and hence make the procedure even more con- 

seirvative.  In fact as k approaches n and the normal approximation 

becomes less valid the procedure will undoubtedly automatically 

merge into the deterministic one where only the absolute bounds 

will cut. 

A more advanced use of the statistical properties of the 

problem, which would undoubtedly yield much jjreater cutting power, 

would be to Implicitly enumerate subsets of maps which have low 

percentages of maps which satisfy the constraints pairwise. 

Relying on the fact that any pair of the random variables 2 (k) 

and 2 (k) has an asymptotic bi-variate normal distribution, we 
J 

can use the conditional probability distribution of 2 (k) given 

R (k).  In this instance Z (k) is asymptotically normally 

distributed about 

c(g (k),g (k)) N 

(Z (U))= E(g (k))+ ^    ( Z (k)-E(S (k)) 1   with 
J J       - (g^k))       ^ 1      1 

2 
c(Z Tk), 2 fk)) 

r.       =  a (8 (k)) . 11-    iv "  ~y 
J'      J a(2J(k))T(aa(k)) 

The conditional distribution of 2 (k) depends on the particular 

value of S (k) chosen.  For the purpose of obtaining a critical 

point we may choose a realizable value of g (k) which gives the 

lowest and, therefore, weakest critical value.  Now for 

c(Z (k), Z (k)) < 0 the minimum value of a (Z (kl) occurs by 
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using 

fS > 
Y(i)  = mln    Z  (k),V   y for 2  (k)  where 

fet(k)  =      5 +  a.,   and S*  =   (p   I  a,     > 0 and k < p < n). 
i pgc:       Ik 1        l^   '     ip *■ -     > 

With c(g  (k),Z  (k))  > 0  the minimum value of n(a  (k))  occurs by 

using    Y(l)  = B~(k). 

In either  Instance one can  use    Z    (k;l)  =   _(Y(1))   +  c n\  i 

in  place of ü  (k)   in  the preceding arjUHents.     For  each variable 

T>  i\),   i   '' J,   a critial  point  s"(k,i)  is obtained.     Let 

%     (k)  denote the maximum value.    This value  constitutes the best 

bound obtainable using  the constraints pairwise.     In  practice, 

of  course,   the critical   points would be generated  sequentially. 

At  each :,tep,   the algorithm checks whether  the critical  point 

exceeds V  (k)  or not. 

The most general use of the statistical properties of 

the problem would be to calculate directly the probability of the 

set of completion maps which simultaneously satisfy all the 

constraints and yield a better value of the criterion function 

than currently known.  This would be, 

Pr(g (k)< V (k),Z1(k) < V^k) %   (k) < V (k)} 
c— c    l—l m--m 

Theoretically,   for  each  choice of a value  for x   ,   tnis  probability 
K 

can be calculated approximately from the asymptotic multivariate 

normal distribution. In practice although con.-iderablo research 

has  been  done on  the  subject  over a  large period of   time,   there 

does  not  appear to  be  effective means  of computing  directly 

5 
thi;.   probability  beyond  the  bi-variate case. 
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In terms of the overall algorithm, information from 

the above tests is used in step 5,  If, when settinR x =1, wo 
K 

determine by use of the bounds that a possible completion is to 

be ruled out we set R =R,-fll.  Similarly. In the case where 
k    k 

x =0  Is   tested,   we  set  R =R  -(0),     If wc could compute   the multi- 
K K  K 

variate normal then we rule out either or both values If their 

respective probabilities are less than a confidence level a. 

Consider the case where ncltlier value can be ruled 

out.  Step two in the enumerative scheme calls lor mapping the 

element i*=k into ar element J* (0,1]=R .  This, of course, 

corresponds to ; electing a value for .<, of zero or one.  Note 

that either choice should load to an improve, feasible solution. 

While the enumerative scheme guarantees tnat if necessary both 

values will be checked, it is important lor computational 

efficiency to make a Judicioui cnolce.  By making a choice which 

leads to a feasible solution with a lower value, we obtain a 

sharper cut-off point.  This cut-off point allows, in subsequent 

generation of maps, the implicit enumeration of larger subsets 

of maps tnan would be possible if a feasible, but higher value 

of the criterion l inction is obtained.  In order to achieve this 

we elect to check first that subset of maps which contains a 

larger proportion of improved feasible solutions. 



Conclusion 

As is well known, many problems in combinatorial 

programming can be reduced to problems in variables restricted 

to the values zero and one by various artif ices. The attempt 

to convert these problems to integer mathematical programming 

problems by introducing large numbers of structural constraints 

on the variables has not proved computationally effective. 

Combinatorial programs, almost by definition are associated with 

maps of one finite set into another and thu generate a finite 

class of maps which can be enumerated by the general algorithm 

presented here. It i s our intention to attack these differ~nt 

problems by characterizing the statistical structure of the 

as sociated finite class of maps. Our technique consists of 

trying to identify the optimal feasible map in a class of maps 

by introducing random variables as functionals on the class of 

maps. 

In an earlier paper (&'l the authors have applied the 

above ideas to a different type of mapping scheme. Some pre­

liminary c omputational results were given in that paper. Future 

papers will develop other types of maps and their statistical 

properties and show bow these maps can be used to solve 

important industrial problems. 

17. 
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I 
FOOTNOTES 

1. For a discussion of methods of transforming problem (2) 

Into tho form of problem (1) see [l]. 

2. See • .g.   [5] for a presentation of Gomory's approach to the 

problem. 

3. See also [4]. 

4. See [3,   for a discussion of such extensions. 

5. In [9j  a comprehensive survey of  the area  is given. 
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